| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909 |
- #
- # QR Code generator library (Python)
- #
- # Copyright (c) Project Nayuki. (MIT License)
- # https://www.nayuki.io/page/qr-code-generator-library
- #
- # Permission is hereby granted, free of charge, to any person obtaining a copy of
- # this software and associated documentation files (the "Software"), to deal in
- # the Software without restriction, including without limitation the rights to
- # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
- # the Software, and to permit persons to whom the Software is furnished to do so,
- # subject to the following conditions:
- # - The above copyright notice and this permission notice shall be included in
- # all copies or substantial portions of the Software.
- # - The Software is provided "as is", without warranty of any kind, express or
- # implied, including but not limited to the warranties of merchantability,
- # fitness for a particular purpose and noninfringement. In no event shall the
- # authors or copyright holders be liable for any claim, damages or other
- # liability, whether in an action of contract, tort or otherwise, arising from,
- # out of or in connection with the Software or the use or other dealings in the
- # Software.
- #
- from __future__ import annotations
- import collections, itertools, re
- from collections.abc import Sequence
- from typing import Callable, Dict, List, Optional, Tuple, Union
- # ---- QR Code symbol class ----
- class QrCode:
- """A QR Code symbol, which is a type of two-dimension barcode.
- Invented by Denso Wave and described in the ISO/IEC 18004 standard.
- Instances of this class represent an immutable square grid of dark and light cells.
- The class provides static factory functions to create a QR Code from text or binary data.
- The class covers the QR Code Model 2 specification, supporting all versions (sizes)
- from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
-
- Ways to create a QR Code object:
- - High level: Take the payload data and call QrCode.encode_text() or QrCode.encode_binary().
- - Mid level: Custom-make the list of segments and call QrCode.encode_segments().
- - Low level: Custom-make the array of data codeword bytes (including
- segment headers and final padding, excluding error correction codewords),
- supply the appropriate version number, and call the QrCode() constructor.
- (Note that all ways require supplying the desired error correction level.)"""
-
- # ---- Static factory functions (high level) ----
-
- @staticmethod
- def encode_text(text: str, ecl: QrCode.Ecc) -> QrCode:
- """Returns a QR Code representing the given Unicode text string at the given error correction level.
- As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer
- Unicode code points (not UTF-16 code units) if the low error correction level is used. The smallest possible
- QR Code version is automatically chosen for the output. The ECC level of the result may be higher than the
- ecl argument if it can be done without increasing the version."""
- segs: List[QrSegment] = QrSegment.make_segments(text)
- return QrCode.encode_segments(segs, ecl)
-
-
- @staticmethod
- def encode_binary(data: Union[bytes,Sequence[int]], ecl: QrCode.Ecc) -> QrCode:
- """Returns a QR Code representing the given binary data at the given error correction level.
- This function always encodes using the binary segment mode, not any text mode. The maximum number of
- bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
- The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version."""
- return QrCode.encode_segments([QrSegment.make_bytes(data)], ecl)
-
-
- # ---- Static factory functions (mid level) ----
-
- @staticmethod
- def encode_segments(segs: Sequence[QrSegment], ecl: QrCode.Ecc, minversion: int = 1, maxversion: int = 40, mask: int = -1, boostecl: bool = True) -> QrCode:
- """Returns a QR Code representing the given segments with the given encoding parameters.
- The smallest possible QR Code version within the given range is automatically
- chosen for the output. Iff boostecl is true, then the ECC level of the result
- may be higher than the ecl argument if it can be done without increasing the
- version. The mask number is either between 0 to 7 (inclusive) to force that
- mask, or -1 to automatically choose an appropriate mask (which may be slow).
- This function allows the user to create a custom sequence of segments that switches
- between modes (such as alphanumeric and byte) to encode text in less space.
- This is a mid-level API; the high-level API is encode_text() and encode_binary()."""
-
- if not (QrCode.MIN_VERSION <= minversion <= maxversion <= QrCode.MAX_VERSION) or not (-1 <= mask <= 7):
- raise ValueError("Invalid value")
-
- # Find the minimal version number to use
- for version in range(minversion, maxversion + 1):
- datacapacitybits: int = QrCode._get_num_data_codewords(version, ecl) * 8 # Number of data bits available
- datausedbits: Optional[int] = QrSegment.get_total_bits(segs, version)
- if (datausedbits is not None) and (datausedbits <= datacapacitybits):
- break # This version number is found to be suitable
- if version >= maxversion: # All versions in the range could not fit the given data
- msg: str = "Segment too long"
- if datausedbits is not None:
- msg = f"Data length = {datausedbits} bits, Max capacity = {datacapacitybits} bits"
- raise DataTooLongError(msg)
- assert datausedbits is not None
-
- # Increase the error correction level while the data still fits in the current version number
- for newecl in (QrCode.Ecc.MEDIUM, QrCode.Ecc.QUARTILE, QrCode.Ecc.HIGH): # From low to high
- if boostecl and (datausedbits <= QrCode._get_num_data_codewords(version, newecl) * 8):
- ecl = newecl
-
- # Concatenate all segments to create the data bit string
- bb = _BitBuffer()
- for seg in segs:
- bb.append_bits(seg.get_mode().get_mode_bits(), 4)
- bb.append_bits(seg.get_num_chars(), seg.get_mode().num_char_count_bits(version))
- bb.extend(seg._bitdata)
- assert len(bb) == datausedbits
-
- # Add terminator and pad up to a byte if applicable
- datacapacitybits = QrCode._get_num_data_codewords(version, ecl) * 8
- assert len(bb) <= datacapacitybits
- bb.append_bits(0, min(4, datacapacitybits - len(bb)))
- bb.append_bits(0, -len(bb) % 8) # Note: Python's modulo on negative numbers behaves better than C family languages
- assert len(bb) % 8 == 0
-
- # Pad with alternating bytes until data capacity is reached
- for padbyte in itertools.cycle((0xEC, 0x11)):
- if len(bb) >= datacapacitybits:
- break
- bb.append_bits(padbyte, 8)
-
- # Pack bits into bytes in big endian
- datacodewords = bytearray([0] * (len(bb) // 8))
- for (i, bit) in enumerate(bb):
- datacodewords[i >> 3] |= bit << (7 - (i & 7))
-
- # Create the QR Code object
- return QrCode(version, ecl, datacodewords, mask)
-
-
- # ---- Private fields ----
-
- # The version number of this QR Code, which is between 1 and 40 (inclusive).
- # This determines the size of this barcode.
- _version: int
-
- # The width and height of this QR Code, measured in modules, between
- # 21 and 177 (inclusive). This is equal to version * 4 + 17.
- _size: int
-
- # The error correction level used in this QR Code.
- _errcorlvl: QrCode.Ecc
-
- # The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
- # Even if a QR Code is created with automatic masking requested (mask = -1),
- # the resulting object still has a mask value between 0 and 7.
- _mask: int
-
- # The modules of this QR Code (False = light, True = dark).
- # Immutable after constructor finishes. Accessed through get_module().
- _modules: List[List[bool]]
-
- # Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
- _isfunction: List[List[bool]]
-
-
- # ---- Constructor (low level) ----
-
- def __init__(self, version: int, errcorlvl: QrCode.Ecc, datacodewords: Union[bytes,Sequence[int]], msk: int) -> None:
- """Creates a new QR Code with the given version number,
- error correction level, data codeword bytes, and mask number.
- This is a low-level API that most users should not use directly.
- A mid-level API is the encode_segments() function."""
-
- # Check scalar arguments and set fields
- if not (QrCode.MIN_VERSION <= version <= QrCode.MAX_VERSION):
- raise ValueError("Version value out of range")
- if not (-1 <= msk <= 7):
- raise ValueError("Mask value out of range")
-
- self._version = version
- self._size = version * 4 + 17
- self._errcorlvl = errcorlvl
-
- # Initialize both grids to be size*size arrays of Boolean false
- self._modules = [[False] * self._size for _ in range(self._size)] # Initially all light
- self._isfunction = [[False] * self._size for _ in range(self._size)]
-
- # Compute ECC, draw modules
- self._draw_function_patterns()
- allcodewords: bytes = self._add_ecc_and_interleave(bytearray(datacodewords))
- self._draw_codewords(allcodewords)
-
- # Do masking
- if msk == -1: # Automatically choose best mask
- minpenalty: int = 1 << 32
- for i in range(8):
- self._apply_mask(i)
- self._draw_format_bits(i)
- penalty = self._get_penalty_score()
- if penalty < minpenalty:
- msk = i
- minpenalty = penalty
- self._apply_mask(i) # Undoes the mask due to XOR
- assert 0 <= msk <= 7
- self._mask = msk
- self._apply_mask(msk) # Apply the final choice of mask
- self._draw_format_bits(msk) # Overwrite old format bits
-
- del self._isfunction
-
-
- # ---- Accessor methods ----
-
- def get_version(self) -> int:
- """Returns this QR Code's version number, in the range [1, 40]."""
- return self._version
-
- def get_size(self) -> int:
- """Returns this QR Code's size, in the range [21, 177]."""
- return self._size
-
- def get_error_correction_level(self) -> QrCode.Ecc:
- """Returns this QR Code's error correction level."""
- return self._errcorlvl
-
- def get_mask(self) -> int:
- """Returns this QR Code's mask, in the range [0, 7]."""
- return self._mask
-
- def get_module(self, x: int, y: int) -> bool:
- """Returns the color of the module (pixel) at the given coordinates, which is False
- for light or True for dark. The top left corner has the coordinates (x=0, y=0).
- If the given coordinates are out of bounds, then False (light) is returned."""
- return (0 <= x < self._size) and (0 <= y < self._size) and self._modules[y][x]
-
-
- # ---- Private helper methods for constructor: Drawing function modules ----
-
- def _draw_function_patterns(self) -> None:
- """Reads this object's version field, and draws and marks all function modules."""
- # Draw horizontal and vertical timing patterns
- for i in range(self._size):
- self._set_function_module(6, i, i % 2 == 0)
- self._set_function_module(i, 6, i % 2 == 0)
-
- # Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
- self._draw_finder_pattern(3, 3)
- self._draw_finder_pattern(self._size - 4, 3)
- self._draw_finder_pattern(3, self._size - 4)
-
- # Draw numerous alignment patterns
- alignpatpos: List[int] = self._get_alignment_pattern_positions()
- numalign: int = len(alignpatpos)
- skips: Sequence[Tuple[int,int]] = ((0, 0), (0, numalign - 1), (numalign - 1, 0))
- for i in range(numalign):
- for j in range(numalign):
- if (i, j) not in skips: # Don't draw on the three finder corners
- self._draw_alignment_pattern(alignpatpos[i], alignpatpos[j])
-
- # Draw configuration data
- self._draw_format_bits(0) # Dummy mask value; overwritten later in the constructor
- self._draw_version()
-
-
- def _draw_format_bits(self, mask: int) -> None:
- """Draws two copies of the format bits (with its own error correction code)
- based on the given mask and this object's error correction level field."""
- # Calculate error correction code and pack bits
- data: int = self._errcorlvl.formatbits << 3 | mask # errCorrLvl is uint2, mask is uint3
- rem: int = data
- for _ in range(10):
- rem = (rem << 1) ^ ((rem >> 9) * 0x537)
- bits: int = (data << 10 | rem) ^ 0x5412 # uint15
- assert bits >> 15 == 0
-
- # Draw first copy
- for i in range(0, 6):
- self._set_function_module(8, i, _get_bit(bits, i))
- self._set_function_module(8, 7, _get_bit(bits, 6))
- self._set_function_module(8, 8, _get_bit(bits, 7))
- self._set_function_module(7, 8, _get_bit(bits, 8))
- for i in range(9, 15):
- self._set_function_module(14 - i, 8, _get_bit(bits, i))
-
- # Draw second copy
- for i in range(0, 8):
- self._set_function_module(self._size - 1 - i, 8, _get_bit(bits, i))
- for i in range(8, 15):
- self._set_function_module(8, self._size - 15 + i, _get_bit(bits, i))
- self._set_function_module(8, self._size - 8, True) # Always dark
-
-
- def _draw_version(self) -> None:
- """Draws two copies of the version bits (with its own error correction code),
- based on this object's version field, iff 7 <= version <= 40."""
- if self._version < 7:
- return
-
- # Calculate error correction code and pack bits
- rem: int = self._version # version is uint6, in the range [7, 40]
- for _ in range(12):
- rem = (rem << 1) ^ ((rem >> 11) * 0x1F25)
- bits: int = self._version << 12 | rem # uint18
- assert bits >> 18 == 0
-
- # Draw two copies
- for i in range(18):
- bit: bool = _get_bit(bits, i)
- a: int = self._size - 11 + i % 3
- b: int = i // 3
- self._set_function_module(a, b, bit)
- self._set_function_module(b, a, bit)
-
-
- def _draw_finder_pattern(self, x: int, y: int) -> None:
- """Draws a 9*9 finder pattern including the border separator,
- with the center module at (x, y). Modules can be out of bounds."""
- for dy in range(-4, 5):
- for dx in range(-4, 5):
- xx, yy = x + dx, y + dy
- if (0 <= xx < self._size) and (0 <= yy < self._size):
- # Chebyshev/infinity norm
- self._set_function_module(xx, yy, max(abs(dx), abs(dy)) not in (2, 4))
-
-
- def _draw_alignment_pattern(self, x: int, y: int) -> None:
- """Draws a 5*5 alignment pattern, with the center module
- at (x, y). All modules must be in bounds."""
- for dy in range(-2, 3):
- for dx in range(-2, 3):
- self._set_function_module(x + dx, y + dy, max(abs(dx), abs(dy)) != 1)
-
-
- def _set_function_module(self, x: int, y: int, isdark: bool) -> None:
- """Sets the color of a module and marks it as a function module.
- Only used by the constructor. Coordinates must be in bounds."""
- assert type(isdark) is bool
- self._modules[y][x] = isdark
- self._isfunction[y][x] = True
-
-
- # ---- Private helper methods for constructor: Codewords and masking ----
-
- def _add_ecc_and_interleave(self, data: bytearray) -> bytes:
- """Returns a new byte string representing the given data with the appropriate error correction
- codewords appended to it, based on this object's version and error correction level."""
- version: int = self._version
- assert len(data) == QrCode._get_num_data_codewords(version, self._errcorlvl)
-
- # Calculate parameter numbers
- numblocks: int = QrCode._NUM_ERROR_CORRECTION_BLOCKS[self._errcorlvl.ordinal][version]
- blockecclen: int = QrCode._ECC_CODEWORDS_PER_BLOCK [self._errcorlvl.ordinal][version]
- rawcodewords: int = QrCode._get_num_raw_data_modules(version) // 8
- numshortblocks: int = numblocks - rawcodewords % numblocks
- shortblocklen: int = rawcodewords // numblocks
-
- # Split data into blocks and append ECC to each block
- blocks: List[bytes] = []
- rsdiv: bytes = QrCode._reed_solomon_compute_divisor(blockecclen)
- k: int = 0
- for i in range(numblocks):
- dat: bytearray = data[k : k + shortblocklen - blockecclen + (0 if i < numshortblocks else 1)]
- k += len(dat)
- ecc: bytes = QrCode._reed_solomon_compute_remainder(dat, rsdiv)
- if i < numshortblocks:
- dat.append(0)
- blocks.append(dat + ecc)
- assert k == len(data)
-
- # Interleave (not concatenate) the bytes from every block into a single sequence
- result = bytearray()
- for i in range(len(blocks[0])):
- for (j, blk) in enumerate(blocks):
- # Skip the padding byte in short blocks
- if (i != shortblocklen - blockecclen) or (j >= numshortblocks):
- result.append(blk[i])
- assert len(result) == rawcodewords
- return result
-
-
- def _draw_codewords(self, data: bytes) -> None:
- """Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
- data area of this QR Code. Function modules need to be marked off before this is called."""
- assert len(data) == QrCode._get_num_raw_data_modules(self._version) // 8
-
- i: int = 0 # Bit index into the data
- # Do the funny zigzag scan
- for right in range(self._size - 1, 0, -2): # Index of right column in each column pair
- if right <= 6:
- right -= 1
- for vert in range(self._size): # Vertical counter
- for j in range(2):
- x: int = right - j # Actual x coordinate
- upward: bool = (right + 1) & 2 == 0
- y: int = (self._size - 1 - vert) if upward else vert # Actual y coordinate
- if (not self._isfunction[y][x]) and (i < len(data) * 8):
- self._modules[y][x] = _get_bit(data[i >> 3], 7 - (i & 7))
- i += 1
- # If this QR Code has any remainder bits (0 to 7), they were assigned as
- # 0/false/light by the constructor and are left unchanged by this method
- assert i == len(data) * 8
-
-
- def _apply_mask(self, mask: int) -> None:
- """XORs the codeword modules in this QR Code with the given mask pattern.
- The function modules must be marked and the codeword bits must be drawn
- before masking. Due to the arithmetic of XOR, calling _apply_mask() with
- the same mask value a second time will undo the mask. A final well-formed
- QR Code needs exactly one (not zero, two, etc.) mask applied."""
- if not (0 <= mask <= 7):
- raise ValueError("Mask value out of range")
- masker: Callable[[int,int],int] = QrCode._MASK_PATTERNS[mask]
- for y in range(self._size):
- for x in range(self._size):
- self._modules[y][x] ^= (masker(x, y) == 0) and (not self._isfunction[y][x])
-
-
- def _get_penalty_score(self) -> int:
- """Calculates and returns the penalty score based on state of this QR Code's current modules.
- This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score."""
- result: int = 0
- size: int = self._size
- modules: List[List[bool]] = self._modules
-
- # Adjacent modules in row having same color, and finder-like patterns
- for y in range(size):
- runcolor: bool = False
- runx: int = 0
- runhistory = collections.deque([0] * 7, 7)
- for x in range(size):
- if modules[y][x] == runcolor:
- runx += 1
- if runx == 5:
- result += QrCode._PENALTY_N1
- elif runx > 5:
- result += 1
- else:
- self._finder_penalty_add_history(runx, runhistory)
- if not runcolor:
- result += self._finder_penalty_count_patterns(runhistory) * QrCode._PENALTY_N3
- runcolor = modules[y][x]
- runx = 1
- result += self._finder_penalty_terminate_and_count(runcolor, runx, runhistory) * QrCode._PENALTY_N3
- # Adjacent modules in column having same color, and finder-like patterns
- for x in range(size):
- runcolor = False
- runy = 0
- runhistory = collections.deque([0] * 7, 7)
- for y in range(size):
- if modules[y][x] == runcolor:
- runy += 1
- if runy == 5:
- result += QrCode._PENALTY_N1
- elif runy > 5:
- result += 1
- else:
- self._finder_penalty_add_history(runy, runhistory)
- if not runcolor:
- result += self._finder_penalty_count_patterns(runhistory) * QrCode._PENALTY_N3
- runcolor = modules[y][x]
- runy = 1
- result += self._finder_penalty_terminate_and_count(runcolor, runy, runhistory) * QrCode._PENALTY_N3
-
- # 2*2 blocks of modules having same color
- for y in range(size - 1):
- for x in range(size - 1):
- if modules[y][x] == modules[y][x + 1] == modules[y + 1][x] == modules[y + 1][x + 1]:
- result += QrCode._PENALTY_N2
-
- # Balance of dark and light modules
- dark: int = sum((1 if cell else 0) for row in modules for cell in row)
- total: int = size**2 # Note that size is odd, so dark/total != 1/2
- # Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)%
- k: int = (abs(dark * 20 - total * 10) + total - 1) // total - 1
- assert 0 <= k <= 9
- result += k * QrCode._PENALTY_N4
- assert 0 <= result <= 2568888 # Non-tight upper bound based on default values of PENALTY_N1, ..., N4
- return result
-
-
- # ---- Private helper functions ----
-
- def _get_alignment_pattern_positions(self) -> List[int]:
- """Returns an ascending list of positions of alignment patterns for this version number.
- Each position is in the range [0,177), and are used on both the x and y axes.
- This could be implemented as lookup table of 40 variable-length lists of integers."""
- ver: int = self._version
- if ver == 1:
- return []
- else:
- numalign: int = ver // 7 + 2
- step: int = 26 if (ver == 32) else \
- (ver * 4 + numalign * 2 + 1) // (numalign * 2 - 2) * 2
- result: List[int] = [(self._size - 7 - i * step) for i in range(numalign - 1)] + [6]
- return list(reversed(result))
-
-
- @staticmethod
- def _get_num_raw_data_modules(ver: int) -> int:
- """Returns the number of data bits that can be stored in a QR Code of the given version number, after
- all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
- The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table."""
- if not (QrCode.MIN_VERSION <= ver <= QrCode.MAX_VERSION):
- raise ValueError("Version number out of range")
- result: int = (16 * ver + 128) * ver + 64
- if ver >= 2:
- numalign: int = ver // 7 + 2
- result -= (25 * numalign - 10) * numalign - 55
- if ver >= 7:
- result -= 36
- assert 208 <= result <= 29648
- return result
-
-
- @staticmethod
- def _get_num_data_codewords(ver: int, ecl: QrCode.Ecc) -> int:
- """Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
- QR Code of the given version number and error correction level, with remainder bits discarded.
- This stateless pure function could be implemented as a (40*4)-cell lookup table."""
- return QrCode._get_num_raw_data_modules(ver) // 8 \
- - QrCode._ECC_CODEWORDS_PER_BLOCK [ecl.ordinal][ver] \
- * QrCode._NUM_ERROR_CORRECTION_BLOCKS[ecl.ordinal][ver]
-
-
- @staticmethod
- def _reed_solomon_compute_divisor(degree: int) -> bytes:
- """Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
- implemented as a lookup table over all possible parameter values, instead of as an algorithm."""
- if not (1 <= degree <= 255):
- raise ValueError("Degree out of range")
- # Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
- # For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93].
- result = bytearray([0] * (degree - 1) + [1]) # Start off with the monomial x^0
-
- # Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
- # and drop the highest monomial term which is always 1x^degree.
- # Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
- root: int = 1
- for _ in range(degree): # Unused variable i
- # Multiply the current product by (x - r^i)
- for j in range(degree):
- result[j] = QrCode._reed_solomon_multiply(result[j], root)
- if j + 1 < degree:
- result[j] ^= result[j + 1]
- root = QrCode._reed_solomon_multiply(root, 0x02)
- return result
-
-
- @staticmethod
- def _reed_solomon_compute_remainder(data: bytes, divisor: bytes) -> bytes:
- """Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials."""
- result = bytearray([0] * len(divisor))
- for b in data: # Polynomial division
- factor: int = b ^ result.pop(0)
- result.append(0)
- for (i, coef) in enumerate(divisor):
- result[i] ^= QrCode._reed_solomon_multiply(coef, factor)
- return result
-
-
- @staticmethod
- def _reed_solomon_multiply(x: int, y: int) -> int:
- """Returns the product of the two given field elements modulo GF(2^8/0x11D). The arguments and result
- are unsigned 8-bit integers. This could be implemented as a lookup table of 256*256 entries of uint8."""
- if (x >> 8 != 0) or (y >> 8 != 0):
- raise ValueError("Byte out of range")
- # Russian peasant multiplication
- z: int = 0
- for i in reversed(range(8)):
- z = (z << 1) ^ ((z >> 7) * 0x11D)
- z ^= ((y >> i) & 1) * x
- assert z >> 8 == 0
- return z
-
-
- def _finder_penalty_count_patterns(self, runhistory: collections.deque) -> int:
- """Can only be called immediately after a light run is added, and
- returns either 0, 1, or 2. A helper function for _get_penalty_score()."""
- n: int = runhistory[1]
- assert n <= self._size * 3
- core: bool = n > 0 and (runhistory[2] == runhistory[4] == runhistory[5] == n) and runhistory[3] == n * 3
- return (1 if (core and runhistory[0] >= n * 4 and runhistory[6] >= n) else 0) \
- + (1 if (core and runhistory[6] >= n * 4 and runhistory[0] >= n) else 0)
-
-
- def _finder_penalty_terminate_and_count(self, currentruncolor: bool, currentrunlength: int, runhistory: collections.deque) -> int:
- """Must be called at the end of a line (row or column) of modules. A helper function for _get_penalty_score()."""
- if currentruncolor: # Terminate dark run
- self._finder_penalty_add_history(currentrunlength, runhistory)
- currentrunlength = 0
- currentrunlength += self._size # Add light border to final run
- self._finder_penalty_add_history(currentrunlength, runhistory)
- return self._finder_penalty_count_patterns(runhistory)
-
-
- def _finder_penalty_add_history(self, currentrunlength: int, runhistory: collections.deque) -> None:
- if runhistory[0] == 0:
- currentrunlength += self._size # Add light border to initial run
- runhistory.appendleft(currentrunlength)
-
-
- # ---- Constants and tables ----
-
- MIN_VERSION: int = 1 # The minimum version number supported in the QR Code Model 2 standard
- MAX_VERSION: int = 40 # The maximum version number supported in the QR Code Model 2 standard
-
- # For use in _get_penalty_score(), when evaluating which mask is best.
- _PENALTY_N1: int = 3
- _PENALTY_N2: int = 3
- _PENALTY_N3: int = 40
- _PENALTY_N4: int = 10
-
- _ECC_CODEWORDS_PER_BLOCK: Sequence[Sequence[int]] = (
- # Version: (note that index 0 is for padding, and is set to an illegal value)
- # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
- (-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30), # Low
- (-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28), # Medium
- (-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30), # Quartile
- (-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30)) # High
-
- _NUM_ERROR_CORRECTION_BLOCKS: Sequence[Sequence[int]] = (
- # Version: (note that index 0 is for padding, and is set to an illegal value)
- # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
- (-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25), # Low
- (-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49), # Medium
- (-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68), # Quartile
- (-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81)) # High
-
- _MASK_PATTERNS: Sequence[Callable[[int,int],int]] = (
- (lambda x, y: (x + y) % 2 ),
- (lambda x, y: y % 2 ),
- (lambda x, y: x % 3 ),
- (lambda x, y: (x + y) % 3 ),
- (lambda x, y: (x // 3 + y // 2) % 2 ),
- (lambda x, y: x * y % 2 + x * y % 3 ),
- (lambda x, y: (x * y % 2 + x * y % 3) % 2 ),
- (lambda x, y: ((x + y) % 2 + x * y % 3) % 2),
- )
-
-
- # ---- Public helper enumeration ----
-
- class Ecc:
- ordinal: int # (Public) In the range 0 to 3 (unsigned 2-bit integer)
- formatbits: int # (Package-private) In the range 0 to 3 (unsigned 2-bit integer)
-
- """The error correction level in a QR Code symbol. Immutable."""
- # Private constructor
- def __init__(self, i: int, fb: int) -> None:
- self.ordinal = i
- self.formatbits = fb
-
- # Placeholders
- LOW : QrCode.Ecc
- MEDIUM : QrCode.Ecc
- QUARTILE: QrCode.Ecc
- HIGH : QrCode.Ecc
-
- # Public constants. Create them outside the class.
- Ecc.LOW = Ecc(0, 1) # The QR Code can tolerate about 7% erroneous codewords
- Ecc.MEDIUM = Ecc(1, 0) # The QR Code can tolerate about 15% erroneous codewords
- Ecc.QUARTILE = Ecc(2, 3) # The QR Code can tolerate about 25% erroneous codewords
- Ecc.HIGH = Ecc(3, 2) # The QR Code can tolerate about 30% erroneous codewords
- # ---- Data segment class ----
- class QrSegment:
- """A segment of character/binary/control data in a QR Code symbol.
- Instances of this class are immutable.
- The mid-level way to create a segment is to take the payload data
- and call a static factory function such as QrSegment.make_numeric().
- The low-level way to create a segment is to custom-make the bit buffer
- and call the QrSegment() constructor with appropriate values.
- This segment class imposes no length restrictions, but QR Codes have restrictions.
- Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
- Any segment longer than this is meaningless for the purpose of generating QR Codes."""
-
- # ---- Static factory functions (mid level) ----
-
- @staticmethod
- def make_bytes(data: Union[bytes,Sequence[int]]) -> QrSegment:
- """Returns a segment representing the given binary data encoded in byte mode.
- All input byte lists are acceptable. Any text string can be converted to
- UTF-8 bytes (s.encode("UTF-8")) and encoded as a byte mode segment."""
- bb = _BitBuffer()
- for b in data:
- bb.append_bits(b, 8)
- return QrSegment(QrSegment.Mode.BYTE, len(data), bb)
-
-
- @staticmethod
- def make_numeric(digits: str) -> QrSegment:
- """Returns a segment representing the given string of decimal digits encoded in numeric mode."""
- if not QrSegment.is_numeric(digits):
- raise ValueError("String contains non-numeric characters")
- bb = _BitBuffer()
- i: int = 0
- while i < len(digits): # Consume up to 3 digits per iteration
- n: int = min(len(digits) - i, 3)
- bb.append_bits(int(digits[i : i + n]), n * 3 + 1)
- i += n
- return QrSegment(QrSegment.Mode.NUMERIC, len(digits), bb)
-
-
- @staticmethod
- def make_alphanumeric(text: str) -> QrSegment:
- """Returns a segment representing the given text string encoded in alphanumeric mode.
- The characters allowed are: 0 to 9, A to Z (uppercase only), space,
- dollar, percent, asterisk, plus, hyphen, period, slash, colon."""
- if not QrSegment.is_alphanumeric(text):
- raise ValueError("String contains unencodable characters in alphanumeric mode")
- bb = _BitBuffer()
- for i in range(0, len(text) - 1, 2): # Process groups of 2
- temp: int = QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[i]] * 45
- temp += QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[i + 1]]
- bb.append_bits(temp, 11)
- if len(text) % 2 > 0: # 1 character remaining
- bb.append_bits(QrSegment._ALPHANUMERIC_ENCODING_TABLE[text[-1]], 6)
- return QrSegment(QrSegment.Mode.ALPHANUMERIC, len(text), bb)
-
-
- @staticmethod
- def make_segments(text: str) -> List[QrSegment]:
- """Returns a new mutable list of zero or more segments to represent the given Unicode text string.
- The result may use various segment modes and switch modes to optimize the length of the bit stream."""
-
- # Select the most efficient segment encoding automatically
- if text == "":
- return []
- elif QrSegment.is_numeric(text):
- return [QrSegment.make_numeric(text)]
- elif QrSegment.is_alphanumeric(text):
- return [QrSegment.make_alphanumeric(text)]
- else:
- return [QrSegment.make_bytes(text.encode("UTF-8"))]
-
-
- @staticmethod
- def make_eci(assignval: int) -> QrSegment:
- """Returns a segment representing an Extended Channel Interpretation
- (ECI) designator with the given assignment value."""
- bb = _BitBuffer()
- if assignval < 0:
- raise ValueError("ECI assignment value out of range")
- elif assignval < (1 << 7):
- bb.append_bits(assignval, 8)
- elif assignval < (1 << 14):
- bb.append_bits(0b10, 2)
- bb.append_bits(assignval, 14)
- elif assignval < 1000000:
- bb.append_bits(0b110, 3)
- bb.append_bits(assignval, 21)
- else:
- raise ValueError("ECI assignment value out of range")
- return QrSegment(QrSegment.Mode.ECI, 0, bb)
-
-
- # Tests whether the given string can be encoded as a segment in numeric mode.
- # A string is encodable iff each character is in the range 0 to 9.
- @staticmethod
- def is_numeric(text: str) -> bool:
- return QrSegment._NUMERIC_REGEX.fullmatch(text) is not None
-
-
- # Tests whether the given string can be encoded as a segment in alphanumeric mode.
- # A string is encodable iff each character is in the following set: 0 to 9, A to Z
- # (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
- @staticmethod
- def is_alphanumeric(text: str) -> bool:
- return QrSegment._ALPHANUMERIC_REGEX.fullmatch(text) is not None
-
-
- # ---- Private fields ----
-
- # The mode indicator of this segment. Accessed through get_mode().
- _mode: QrSegment.Mode
-
- # The length of this segment's unencoded data. Measured in characters for
- # numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
- # Always zero or positive. Not the same as the data's bit length.
- # Accessed through get_num_chars().
- _numchars: int
-
- # The data bits of this segment. Accessed through get_data().
- _bitdata: List[int]
-
-
- # ---- Constructor (low level) ----
-
- def __init__(self, mode: QrSegment.Mode, numch: int, bitdata: Sequence[int]) -> None:
- """Creates a new QR Code segment with the given attributes and data.
- The character count (numch) must agree with the mode and the bit buffer length,
- but the constraint isn't checked. The given bit buffer is cloned and stored."""
- if numch < 0:
- raise ValueError()
- self._mode = mode
- self._numchars = numch
- self._bitdata = list(bitdata) # Make defensive copy
-
-
- # ---- Accessor methods ----
-
- def get_mode(self) -> QrSegment.Mode:
- """Returns the mode field of this segment."""
- return self._mode
-
- def get_num_chars(self) -> int:
- """Returns the character count field of this segment."""
- return self._numchars
-
- def get_data(self) -> List[int]:
- """Returns a new copy of the data bits of this segment."""
- return list(self._bitdata) # Make defensive copy
-
-
- # Package-private function
- @staticmethod
- def get_total_bits(segs: Sequence[QrSegment], version: int) -> Optional[int]:
- """Calculates the number of bits needed to encode the given segments at
- the given version. Returns a non-negative number if successful. Otherwise
- returns None if a segment has too many characters to fit its length field."""
- result = 0
- for seg in segs:
- ccbits: int = seg.get_mode().num_char_count_bits(version)
- if seg.get_num_chars() >= (1 << ccbits):
- return None # The segment's length doesn't fit the field's bit width
- result += 4 + ccbits + len(seg._bitdata)
- return result
-
-
- # ---- Constants ----
-
- # Describes precisely all strings that are encodable in numeric mode.
- _NUMERIC_REGEX: re.Pattern = re.compile(r"[0-9]*")
-
- # Describes precisely all strings that are encodable in alphanumeric mode.
- _ALPHANUMERIC_REGEX: re.Pattern = re.compile(r"[A-Z0-9 $%*+./:-]*")
-
- # Dictionary of "0"->0, "A"->10, "$"->37, etc.
- _ALPHANUMERIC_ENCODING_TABLE: Dict[str,int] = {ch: i for (i, ch) in enumerate("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:")}
-
-
- # ---- Public helper enumeration ----
-
- class Mode:
- """Describes how a segment's data bits are interpreted. Immutable."""
-
- _modebits: int # The mode indicator bits, which is a uint4 value (range 0 to 15)
- _charcounts: Tuple[int,int,int] # Number of character count bits for three different version ranges
-
- # Private constructor
- def __init__(self, modebits: int, charcounts: Tuple[int,int,int]):
- self._modebits = modebits
- self._charcounts = charcounts
-
- # Package-private method
- def get_mode_bits(self) -> int:
- """Returns an unsigned 4-bit integer value (range 0 to 15) representing the mode indicator bits for this mode object."""
- return self._modebits
-
- # Package-private method
- def num_char_count_bits(self, ver: int) -> int:
- """Returns the bit width of the character count field for a segment in this mode
- in a QR Code at the given version number. The result is in the range [0, 16]."""
- return self._charcounts[(ver + 7) // 17]
-
- # Placeholders
- NUMERIC : QrSegment.Mode
- ALPHANUMERIC: QrSegment.Mode
- BYTE : QrSegment.Mode
- KANJI : QrSegment.Mode
- ECI : QrSegment.Mode
-
- # Public constants. Create them outside the class.
- Mode.NUMERIC = Mode(0x1, (10, 12, 14))
- Mode.ALPHANUMERIC = Mode(0x2, ( 9, 11, 13))
- Mode.BYTE = Mode(0x4, ( 8, 16, 16))
- Mode.KANJI = Mode(0x8, ( 8, 10, 12))
- Mode.ECI = Mode(0x7, ( 0, 0, 0))
- # ---- Private helper class ----
- class _BitBuffer(list):
- """An appendable sequence of bits (0s and 1s). Mainly used by QrSegment."""
-
- def append_bits(self, val: int, n: int) -> None:
- """Appends the given number of low-order bits of the given
- value to this buffer. Requires n >= 0 and 0 <= val < 2^n."""
- if (n < 0) or (val >> n != 0):
- raise ValueError("Value out of range")
- self.extend(((val >> i) & 1) for i in reversed(range(n)))
- def _get_bit(x: int, i: int) -> bool:
- """Returns true iff the i'th bit of x is set to 1."""
- return (x >> i) & 1 != 0
- class DataTooLongError(ValueError):
- """Raised when the supplied data does not fit any QR Code version. Ways to handle this exception include:
- - Decrease the error correction level if it was greater than Ecc.LOW.
- - If the encode_segments() function was called with a maxversion argument, then increase
- it if it was less than QrCode.MAX_VERSION. (This advice does not apply to the other
- factory functions because they search all versions up to QrCode.MAX_VERSION.)
- - Split the text data into better or optimal segments in order to reduce the number of bits required.
- - Change the text or binary data to be shorter.
- - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric).
- - Propagate the error upward to the caller/user."""
- pass
|